Synaptic Plasticity and NO-cGMP-PKG Signaling Regulate Pre- and Postsynaptic Alterations at Rat Lateral Amygdala Synapses Following Fear Conditioning
نویسندگان
چکیده
In vertebrate models of synaptic plasticity, signaling via the putative "retrograde messenger" nitric oxide (NO) has been hypothesized to serve as a critical link between functional and structural alterations at pre- and postsynaptic sites. In the present study, we show that auditory Pavlovian fear conditioning is associated with significant and long-lasting increases in the expression of the postsynaptically-localized protein GluR1 and the presynaptically-localized proteins synaptophysin and synapsin in the lateral amygdala (LA) within 24 hrs following training. Further, we show that rats given intra-LA infusion of either the NR2B-selective antagonist Ifenprodil, the NOS inhibitor 7-Ni, or the PKG inhibitor Rp-8-Br-PET-cGMPS exhibit significant decreases in training-induced expression of GluR1, synaptophysin, and synapsin immunoreactivity in the LA, while those rats infused with the PKG activator 8-Br-cGMP exhibit a significant increase in these proteins in the LA. In contrast, rats given intra-LA infusion of the NO scavenger c-PTIO exhibit a significant decrease in synapsin and synaptophysin expression in the LA, but no significant impairment in the expression of GluR1. Finally, we show that intra-LA infusions of the ROCK inhibitor Y-27632 or the CaMKII inhibitor KN-93 impair training-induced expression of GluR1, synapsin, and synaptophysin in the LA. These findings suggest that the NO-cGMP-PKG, Rho/ROCK, and CaMKII signaling pathways regulate fear memory consolidation, in part, by promoting both pre- and post-synaptic alterations at LA synapses. They further suggest that synaptic plasticity in the LA during auditory fear conditioning promotes alterations at presynaptic sites via NO-driven "retrograde signaling".
منابع مشابه
The NO-cGMP-PKG Signaling Pathway Coordinately Regulates ERK and ERK-Driven Gene Expression at Pre- and Postsynaptic Sites Following LTP-Inducing Stimulation of Thalamo-Amygdala Synapses
Long-term potentiation (LTP) at thalamic input synapses to the lateral nucleus of the amygdala (LA) has been proposed as a cellular mechanism of the formation of auditory fear memories. We have previously shown that signaling via ERK/MAPK in both the LA and the medial division of the medial geniculate nucleus/posterior intralaminar nucleus (MGm/PIN) is critical for LTP at thalamo-LA synapses. H...
متن کاملThe NO-cGMP-PKG signaling pathway regulates synaptic plasticity and fear memory consolidation in the lateral amygdala via activation of ERK/MAP kinase.
Recent studies have shown that nitric oxide (NO) signaling plays a crucial role in memory consolidation of Pavlovian fear conditioning and in synaptic plasticity in the lateral amygdala (LA). In the present experiments, we examined the role of the cGMP-dependent protein kinase (PKG), a downstream effector of NO, in fear memory consolidation and long-term potentiation (LTP) at thalamic and corti...
متن کاملA Role for Nitric Oxide-Driven Retrograde Signaling in the Consolidation of a Fear Memory
In both invertebrate and vertebrate models of synaptic plasticity, signaling via the putative "retrograde messenger" nitric oxide (NO) has been hypothesized to serve as a critical link between functional and structural alterations at pre- and postsynaptic sites. However, while in vitro models of synaptic plasticity have consistently implicated NO signaling in linking postsynaptic induction mech...
متن کاملLocalization of Mineralocorticoid Receptors at Mammalian Synapses
In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the s...
متن کاملL-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala.
Long-term potentiation (LTP) in the amygdala is a leading candidate mechanism to explain fear conditioning, a prominent model of emotional memory. LTP occurs in the pathway from the auditory thalamus to the lateral amygdala, and during fear conditioning LTP-like changes occur in the synapses of this pathway. Nevertheless, LTP has not been investigated in the thalamoamygdala pathway using in vit...
متن کامل